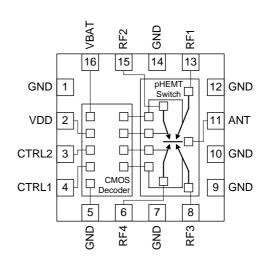


SP4T SWITCH


RoHS Compliant & Pb-Free Product Package Style: QFN, 16-pin, 3mmx3mm

Features

- Low Insertion Loss 0.4dB @ 1GHz
- High Isolation 29dB @ 1GHz
- V_{DD}=2.5V to 2.85V, Down to 1.8V with Reduced Specifications
- High Linearity IMD <-110dBm
- Harmonics: -75dBc@1GHz
- GaAs pHEMT Process

Applications

- Cellular Handset Applications
- Multi-Mode GSM, W-CDMA Applications
- GSM/GPRS/EDGE Switch Applications
- Cellular Infrastructure Applications

Functional Block Diagram

Product Description

The RF1450 is a single-pole four-throw (SP4T) high power switch specially designed to handle GSM power applications. Excellent linearity performance achieved by the RF1450 makes it ideal for multimode GSM/EDGE/W-CDMA applications. Additionally, RF1450 includes integrated decoding logic, allowing just two control lines needed for switch control. The RF1450 is packaged in a very compact 3mmx3mmx0.9mm, 16-pin, leadless QFN package.

Ordering Information

RF1450 SP4T Switch

RF1450PCBA-410 Fully Assembled Evaluation Board

Optimum Technology Matching® Applied

☐ GaAs HBT	☐ SiGe BiCMOS	☑ GaAs pHEMT	☐ GaN HEMT
☐ GaAs MESFET	☐ Si BiCMOS	▼ Si CMOS	
☐ InGaP HBT	☐ SiGe HBT	☐ Si BJT	

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity™, PowerStar®, POLARIS™ TOTAL RADIO™ and UltimateBlue™ are trademarks of RFMD, LLC, BLUETOOTH is a trade mark owned by Bluetooth SiG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006, RF Micro Devices, Inc.

Absolute Maximum Ratings

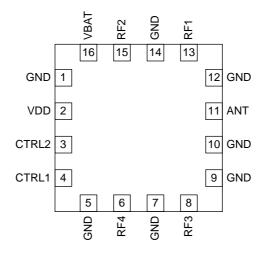
Parameter	Rating	Unit
V _{BATT}	6.0	V
V _{DD}	3.0	V
Maximum Input Power (OGHz to 2GHz, 2.5V Control)	+36	dBm
Operating Temperature	-20 to +85	°C
Storage Temperature	-35 to +100	°C

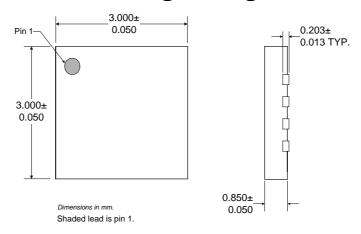
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

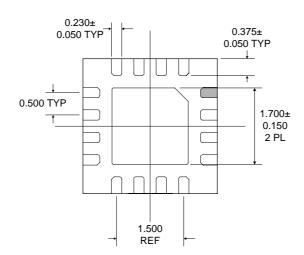
RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

Davamatav	Specification		11:4	O andition		
Parameter	Min.	Min. Typ.		Unit	Condition	
Electrical Characteristics					Active Mode: $V_{HIGH} \ge 1.3V$, $V_{LOW} \le 0.05V$; $Temp = 25$ °C; $V_{DD} = 2.5V$ to $2.85V$ $P_{IN} = 34.5 dBm@0.9 GHz$ or $31 dBm@1.8 GHz$; All RF ports terminated to $Z_0 = 50\Omega$.	
Insertion Loss						
0.5 GHz to 1.0 GHz		0.40	0.55	dB		
1.0GHz to 2.0GHz		0.45	0.60	dB		
2.1GHz		0.50	0.65	dB		
2.5 GHz		0.60	0.90	dB		
Isolation						
0.5 GHz to 1.0 GHz	27	29		dB		
1.0GHz to 2.0GHz	22	24		dB		
2.1GHz	21	23		dB		
2.5 GHz	19	21		dB		
RF Port Return Loss						
0.5 GHz to 2.2 GHz	15			dB	All RF ports in Insertion Loss state.	
Operating Characteristics						
Input Power at 0.1dB	37			dBm	f=0.9GHz	
Compression Point	34			dBm	f=1.8GHz	
Second Harmonic (2f ₀)		-80		dBc	f=0.9GHz, P _{IN} =34.5dBm	
		-85		dBc	f=1.8GHz, P _{IN} =31.5dBm	
Third Harmonic (3f ₀)		-80		dBc	f=0.9GHz, P _{IN} =34.5dBm	
		-80		dBc	f=1.8GHz, P _{IN} =31.5dBm	
IMD		-110		dBm	Fundamental Frequency Power Level=+20dBm @ 1950MHz Blocker Power Level=-15dBm @ 1760MHz	
Power Handling in Mismatched Condition		34.5		dBm	VSWR>20; f=0.9 GHz	
		31.0		dBm	VSWR>20; f=1.8GHz	
Switching Speed			5	μs		
Start-up Time			25	μS	Maximum set up time for the switch to reach fully compliant operation	

Dovementor	Specification		1124	On white we		
Parameter	Min.	Тур.	Max.	Unit	Condition	
VDD=1.8V<2.5V, Temp=25°C						
Second Harmonic 2f ₀		-80		dBc	f=0.9GHz, P _{IN} =34.5dBm	
		-80		dBc	f=1.8GHz, P _{IN} =31.5dBm	
Third Harmonic 3f ₀		-75		dBc	f=0.9GHz, P _{IN} =34.5dBm	
		-75		dBc	f=1.8GHz, P _{IN} =31.5dBm	
IMD		-105		dBm	Fundamental Frequency Power Level=+20dBm @ 1950MHz Blocker Power Level=-15dBm @ 1760MHz	
Supply and Control Signal Characteristics						
Supply Voltage (V _{BAT})	2.9		4.4	V		
Supply Current (V _{BAT})						
Standby Mode			0.1	μΑ		
Active Mode		0.55	1.50	μΑ		
Switched Supply Voltage (V _{DD})						
V _{HIGH}	1.80	2.50	2.85	V	With reduced specifications below 2.5 V V_{DD} , see electrical parameters table.	
V_{LOW}		0	0.05	V		
Switched Supply Current (V _{DD})						
I _{HIGH}		160	250	μΑ		
I _{LOW}		0		mA		
Control Voltage (CTRL1, CTRL2)						
V _{HIGH}	1.3		2.7	V		
V_{LOW}		0	0.05	V		
Control Current (CTRL1, CTRL2)						
l _{High}		0.5		μΑ		
I _{LOW}		0.5		μΑ		


^{*}Through phase is defined as measured normalized using a reference calibration PWB.


Pin	Function	Description
1	GND	Ground.
2	VDD	Supply. The voltage at this node will be switched and it is important that the switch is operating within the specified start up time. This signal might be used as a mode control.
3	CTRL2	Control signal 2.
4	CTRL1	Control signal 1.
5	GND	Ground.
6	RF4	RF output 4.
7	GND	Ground.
8	RF3	RF output 3.
9	GND	Ground.
10	GND	Ground.
11	ANT	RF input (connected to antenna).
12	GND	Ground.
13	RF1	RF output 1.
14	GND	Ground.
15	RF2	RF output 2.
16	VBAT	Constant supply.
Pkg Base	GND	Ground.



Pin Out

Package Drawing

General Information

Control Logic

The switch is operable in four states (see Truth table, below). The switch is designed for two modes: Active and Stand-by. These modes are controlled by the V_{DD} signal. When VDD is high, the switch is active. The start-up time is defined as the switch activated is critical.

Truth Table for Switch States

State	CTRL1	CTRL2	RF Path
1	V_{LOW}	V_{LOW}	ANT-RF1
2	V_{LOW}	V _{HIGH}	ANT-RF2
3	V_{HIGH}	V_{LOW}	ANT-RF3
4	V _{HIGH}	V _{HIGH}	ANT-RF4

Turn On Sequence

	VBATT	VDD	CTRL1	CTRL2	RF Power
1	ON	OFF	OFF	OFF	OFF
2	Х	ON	OFF	OFF	OFF
3	Х	Х	ON	ON	OFF
4	Х	Х	Х	Х	ON

Turn Off Sequence

	VBATT	VDD	CTRL1	CTRL2	RF Power
1	ON	ON	ON	ON	OFF
2	ON	ON	OFF	OFF	Х
3	ON	OFF	Х	Х	X
4	OFF	Х	Х	Х	Х

Note: V_{BATT} must be applied before applying V_{DD} when turning on the part. The part must be turned off in reverse order, V_{DD} first then V_{BATT} .

Electrical Test Methods

The electrical parameters for the switch were measured on test PWB provided by the switch supplier. The test PWB includes means for decoupling RF signals from control signal port (shunt capacitor at control signal ports).

All measurements are done with calibration plane at switch pins. The effect of test board losses and phase delay has been removed from the results.

Reflected Harmonics Measurement

The reflected harmonics should be measured with the output ports connected to open-circuit or short-circuit impedances. An outline of the measurement set-up is shown in Figure 1. The power in and reflected signal levels are calibrated to the DUT input (reference plane). Note that the power is calibrated in a 50Ω system. The assumption is made that the measurement system is designed so that the harmonic levels of external PA, etc., are far below the signals produced by the DUT.

The phase delay for RFOUT1 is altered between 0° and 360°, so that all possible load phases are scanned. The VSWR at the connection shall be $20:1@0.9\,GHz$, $15:1@1.8\,GHz$. The other outputs, shall be connected to open-circuit (P_{IN} left open) or signal ground; both options should be tested. After testing RFOUT1, the same test should be done for the other outputs.

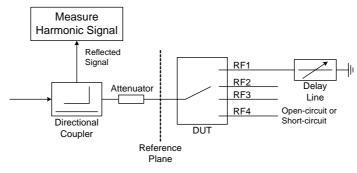
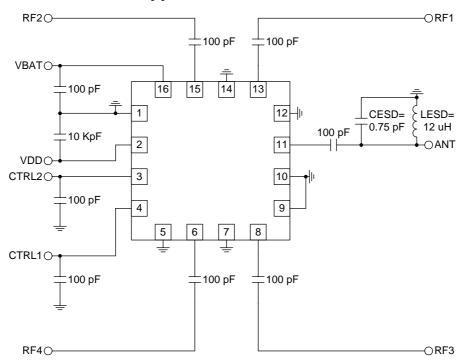
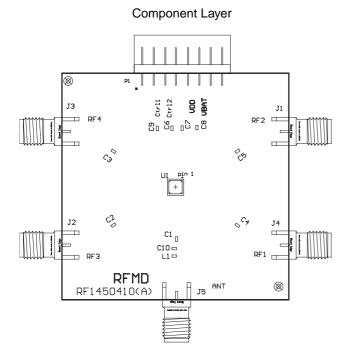
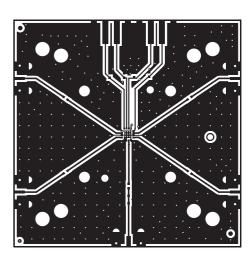



Figure 1. Reflected Harmonics Measurement Set-up

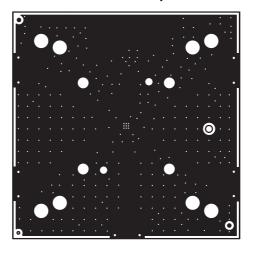
Application Schematic


Application Diagram and Guidelines

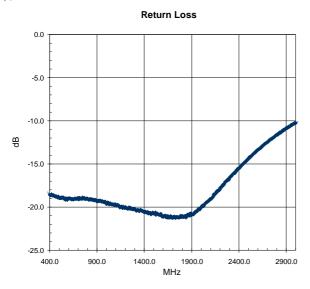
The decoupling capacitors are optional and, if necessary, may be used for noise reduction. Decoupling capacitors on the control pins protect the control circuitry from possible RF leakage. An ESD filter is needed to protect the switch from antenna ESD events. The filter is formed by LESD inductor and CESD capacitor. The switch has a supply input to feed the built-in logic decoding.

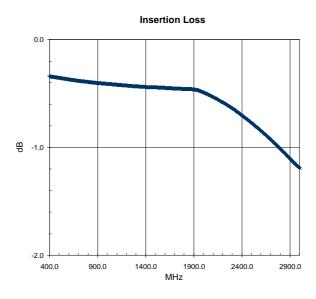


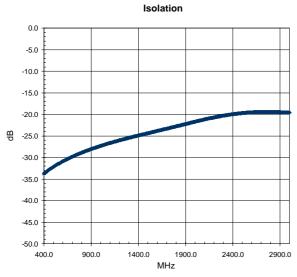
Evaluation Board Layout Board Size 2.0" x 2.0"


Board Thickness 0.0658", Board Material FR-4

Topside RF Layer




Ground Plane Layer



Typical Performance

PCB Design Requirements

PCB Surface Finish

The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is 3μ inch to 8μ inch gold over 180μ inch nickel.

PCB Land Pattern Recommendation

PCB land patterns for RFMD components are based on IPC-7351 standards and RFMD empirical data. The pad pattern shown has been developed and tested for optimized assembly at RFMD. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

PCB Metal Land Pattern

 $A = 0.64 \times 0.28 \text{ Typ.}$ $B = 0.28 \times 0.64 \text{ Typ.}$ C = 1.70 Sq.

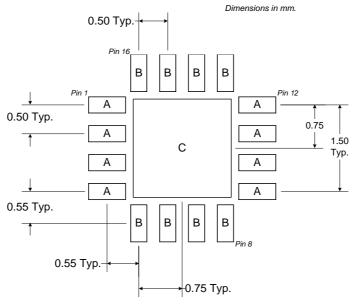


Figure 1. PCB Metal Land Pattern (Top View)

PCB Solder Mask Pattern

Liquid Photo-Imageable (LPI) solder mask is recommended. The solder mask footprint will match what is shown for the PCB metal land pattern with a 2mil to 3mil expansion to accommodate solder mask registration clearance around all pads. The center-grounding pad shall also have a solder mask clearance. Expansion of the pads to create solder mask clearance can be provided in the master data or requested from the PCB fabrication supplier.

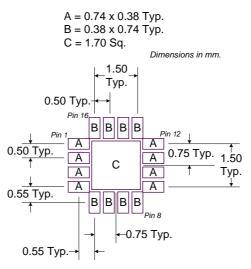


Figure 2. PCB Solder Mask Pattern (Top View)

Thermal Pad and Via Design

The PCB land pattern has been designed with a thermal pad that matches the die paddle size on the bottom of the device.

Thermal vias are required in the PCB layout to effectively conduct heat away from the package. The via pattern has been designed to address thermal, power dissipation and electrical requirements of the device as well as accommodating routing strategies.

The via pattern used for the RFMD qualification is based on thru-hole vias with 0.203mm to 0.330mm finished hole size on a 0.5mm to 1.2mm grid pattern with 0.025mm plating on via walls. If micro vias are used in a design, it is suggested that the quantity of vias be increased by a 4:1 ratio to achieve similar results.